
MikMod Sound Library
Documentation edition 1.3

August 2016

Miodrag Vallat
(miod@mikmod.org)

Copyright c© 1998-2014 Miodrag Vallat and others — see file AUTHORS for complete list.
This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA.

Chapter 1: Introduction 1

1 Introduction

The MikMod sound library is an excellent way for a programmer to add music and sound
effects to an application. It is a powerful and flexible library, with a simple and easy-to-learn
API.

Besides, the library is very portable and runs under a lot of Unices, as well as under
OS/2, MacOS and Windows. Third party individuals also maintain ports on other systems,
including MS-DOS, and BeOS.

MikMod is able to play a wide range of module formats, as well as digital sound files.
It can take advantage of particular features of your system, such as sound redirection over
the network. And due to its modular nature, the library can be extended to support more
sound or module formats, as well as new hardware or other sound output capabilities, as
they appear.

Chapter 2: Tutorial 2

2 Tutorial

This chapter will describe how to quickly incorporate MikMod’s power into your programs.
It doesn’t cover everything, but that’s a start and I hope it will help you understand the
library philosophy.

If you have a real tutorial to put here, you’re welcome ! Please send it to me. . .

2.1 MikMod Concepts

MikMod’s sound output is composed of several sound voices which are mixed, either in
software or in hardware, depending of your hardware configuration. Simple sounds, like
sound effects, use only one voice, whereas sound modules, which are complex arrangements
of sound effects, use several voices.

MikMod’s functions operate either globally, or at the voice level. Differences in the
handling of sound effects and modules are kept minimal, at least for the programmer.

The sound playback is done by a sound driver. MikMod provides several sound drivers:
different hardware drivers, and some software drivers to redirect sound in a file, or over the
network. You can even add your own driver, register it to make it known by the library,
and select it (this is exactly what the module plugin of xmms does).

2.2 A Skeleton Program

To use MikMod in your program, there are a few steps required:
• Include ‘mikmod.h’ in your program.
• Register the MikMod drivers you need.
• Initialize the library with MikMod Init() before using any other MikMod function.
• Give up resources with MikMod Exit() at the end of your program, or before when

MikMod is not needed anymore.
• Link your application with the MikMod sound library.

Here’s a program which meets all those conditions:
/* MikMod Sound Library example program: a skeleton */

#include <mikmod.h>

main()
{
/* register all the drivers */
MikMod_RegisterAllDrivers();

/* initialize the library */
MikMod_Init("");

/* we could play some sound here... */

/* give up */

Chapter 2: Tutorial 3

MikMod_Exit();
}

This program would be compiled with the following command line: cc -o example
example.c ‘libmikmod-config --cflags‘ ‘libmikmod-config --libs‘

Although this programs produces no useful result, many things happen when you run
it. The call to MikMod_RegisterAllDrivers registers all the drivers embedded in the
MikMod library. Then, MikMod_Init chooses the more adequate driver and initializes
it. The program is now ready to produce sound. When sound is not needed any more,
MikMod_Exit is used to relinquish memory and let other programs have access to the sound
hardware.

2.3 Playing Modules

Our program is not really useful if it doesn’t produce sound. Let’s suppose you’ve got this
good old module, “Beyond music”, in the file ‘beyond music.mod’. How about playing it ?

To do this, we’ll use the following code:

/* MikMod Sound Library example program: a simple module player */

#include <unistd.h>
#include <mikmod.h>

main()
{

MODULE *module;

/* register all the drivers */
MikMod_RegisterAllDrivers();

/* register all the module loaders */
MikMod_RegisterAllLoaders();

/* initialize the library */
md_mode |= DMODE_SOFT_MUSIC;
if (MikMod_Init("")) {

fprintf(stderr, "Could not initialize sound, reason: %s\n",
MikMod_strerror(MikMod_errno));

return;
}

/* load module */
module = Player_Load("beyond music.mod", 64, 0);
if (module) {

/* start module */
Player_Start(module);

while (Player_Active()) {

Chapter 2: Tutorial 4

/* we’re playing */
usleep(10000);
MikMod_Update();

}

Player_Stop();
Player_Free(module);

} else
fprintf(stderr, "Could not load module, reason: %s\n",

MikMod_strerror(MikMod_errno));

/* give up */
MikMod_Exit();

}

What’s new here ? First, we’ve not only registered MikMod’s device driver, but also
the module loaders. MikMod comes with a large choice of module loaders, each one for
a different module type. Since every loader is called to determine the type of the module
when we try to load them, you may want to register only a few of them to save time. In
our case, we don’t matter, so we happily register every module loader.

Then, there’s an extra line before calling MikMod_Init. We change the value of MikMod’s
variable md_mode to tell the library that we want the module to be processed by the software.
If you’re the happy owner of a GUS-type card, you could use the specific hardware driver
for this card, but in this case you should not set the DMODE_SOFT_MUSIC flag.

We’ll ensure that MikMod_Init was successful. Note that, in case of error, MikMod
provides the variable MikMod_errno, an equivalent of the C library errno for MikMod
errors, and the function MikMod_strerror, an equivalent to strerror.

Now onto serious business ! The module is loaded with the Player_Load function, which
takes the name of the module file, and the number of voices afforded to the module. In this
case, the module has only 4 channels, so 4 voices, but complex Impulse Tracker modules can
have a lot of voices (as they can have as many as 256 virtual channels with so-called “new
note actions”). Since empty voices don’t cost time to be processed, it is safe to use a big
value, such as 64 or 128. The third parameter is the “curiosity” of the loader: if nonzero,
the loader will search for hidden parts in the module. However, only a few module formats
can embed hidden or non played parts, so we’ll use 0 here.

Now that the module is ready to play, let’s play it. We inform the player that the
current module is module with Player_Start. Playback starts, but we have to update it
on a regular basis. So there’s a loop on the result of the Player_Active function, which
will tell us if the module has finished. To update the sound, we simply call MikMod_Update.

After the module has finished, we tell the player its job is done with Player_Stop, and
we free the module with Player_Free.

2.4 Playing Sound Effects

MikMod is not limited to playing modules, it can also play sound effects, that is, module
samples. It’s a bit more complex than playing a module, because the module player does

Chapter 2: Tutorial 5

a lot of things for us, but here we’ll get more control over what is actually played by the
program. Let’s look at an example:

/* MikMod Sound Library example program: sound effects */

#include <unistd.h>
#include <mikmod.h>

main()
{

int i;
/* sound effects */
SAMPLE *sfx1, *sfx2;
/* voices */
int v1, v2;

/* register all the drivers */
MikMod_RegisterAllDrivers();

/* initialize the library */
md_mode |= DMODE_SOFT_SNDFX;
if (MikMod_Init("")) {

fprintf(stderr, "Could not initialize sound, reason: %s\n",
MikMod_strerror(MikMod_errno));

return;
}

/* load samples */
sfx1 = Sample_Load("first.wav");
if (!sfx1) {

MikMod_Exit();
fprintf(stderr, "Could not load the first sound, reason: %s\n",

MikMod_strerror(MikMod_errno));
return;

}
sfx2 = Sample_Load("second.wav");
if (!sfx2) {

Sample_Free(sfx1);
MikMod_Exit();
fprintf(stderr, "Could not load the second sound, reason: %s\n",

MikMod_strerror(MikMod_errno));
return;

}

/* reserve 2 voices for sound effects */
MikMod_SetNumVoices(-1, 2);

Chapter 2: Tutorial 6

/* get ready to play */
MikMod_EnableOutput();

/* play first sample */
v1 = Sample_Play(sfx1, 0, 0);
for(i = 0; i < 5; i++) {

MikMod_Update();
usleep(100000);

}

/* half a second later, play second sample */
v2 = Sample_Play(sfx2, 0, 0);
do {

MikMod_Update();
usleep(100000);

} while (!Voice_Stopped(v2));

MikMod_DisableOutput();

Sample_Free(sfx2);
Sample_Free(sfx1);

MikMod_Exit();
}

As in the previous example, we begin by registering the sound drivers and initializing
the library. We also ask for software mixing by modifying the variable md_mode.

It’s time to load our files, with the Sample_Load function. Don’t forget to test the return
value — it looks ugly here on such a small example, but it’s a good practice. . .

Since we want to play two samples, we have to use at least two voices for this, so we
reserve them with a MikMod_SetNumVoices call. The first parameter sets the number of
module voices, and the second parameter the number of sound effect voices. We don’t want
to set the number of module voices here (it’s part of the module player’s duty), so we use
the value -1 to keep the current value, and we reserve two sound effect voices.

Now we’re ready to play, so we call MikMod_EnableOutput to make the driver ready.
Sound effects are played by the Sample_Play function. You just have to specify which
sample you want to play, the offset from which you want to start, and the playback flags.
More on this later. The function returns the number of the voice associated to the sample.

We play the first sample for half a second, then we start to play the second sample. Since
we’ve reserved two channels, both samples play simultaneously. We use the Voice_Stopped
function to stop the playback: it returns the current status of the voice argument, which
is zero when the sample plays and nonzero when it has finished. So the do loop will stop
exactly when the second sample is finished, regardless of the length of the first sample.

To finish, we get rid of the samples with Sample_Free.

Chapter 2: Tutorial 7

2.5 More Sound Effects

Sound effects have some attributes that can be affected to control the playback. These are
speed, panning, and volume. Given a voice number, you can affect these attributes with
the Voice_SetFrequency, Voice_SetPanning and Voice_SetVolume functions.

In the previous example, we’ll replace the actual sound code, located between the calls
to MikMod_EnableOutput and MikMod_DisableOutput, with the following code:

Sample_Play(sfx1, 0, 0);
for(i = 0; i < 5; i++) {

MikMod_Update();
usleep(100000);

}
v2 = Sample_Play(sfx2, 0, SFX_CRITICAL);
i = 0;
do {

MikMod_Update();
usleep(100000);
v1 = Sample_Play(sfx1, 0, 0);
Voice_SetVolume(v1, 160);
Voice_SetFrequency(v1, (sfx1->speed * (100 + i)) / 100);
Voice_SetPanning(v2, (i++ & 1) ? PAN_LEFT : PAN_RIGHT);

} while (!Voice_Stopped(v2));

The first thing you’ll notice, is the SFX_CRITICAL flag used to play the second sample.
Since the do loop will add another sample every 100 milliseconds, and we reserved only two
voices, the oldest voice will be cut each time this is necessary. Doing this would cut the
second sample in the second iteration of the loop. However, since we flagged this sound as
“critical”, it won’t be cut until it is finished or we stop it with a Voice_Stop call. So the
second sample will play fine, whereas the first sample will be stopped every loop iteration.

Then, we choose to play the first sample a bit lower, with Voice_SetVolume. Volume
voices range from 0 (silence) to 256. In this case we play the sample at 160. To make the
sound look weird, we also change its frequency with Voice_SetFrequency. The compu-
tation in the example code makes the frequency more and more high (starting from the
sample frequency and then increasing from 1% each iteration).

And to demonstrate the Voice_SetPanning function, we change the panning of the
second sample at each iteration from the left to the right. The argument can be one of the
standard panning PAN_LEFT, PAN_RIGHT, PAN_CENTER and PAN_SURROUND1, or a numeric
value between 0 (PAN_LEFT) and 255 (PAN_RIGHT).

1 PAN_SURROUND will be mapped to PAN_CENTER if the library is initialized without surround sound, that
is, if the variable md_mode doesn’t have the bit DMODE_SURROUND set.

Chapter 3: Using the Library 8

3 Using the Library

This chapter describes the various parts of the library and their uses.

3.1 Library Version

If your program is dynamically linked with the MikMod library, you should check which
version of the library you’re working with. To do this, the library defines a few constants
and a function to help you determine if the current library is adequate for your needs or if
it has to be upgraded.

When your program includes mikmod.h, the following constants are defined:

• LIBMIKMOD_VERSION_MAJOR is equal to the major version number of the library.

• LIBMIKMOD_VERSION_MINOR is equal to the minor version number of the library.

• LIBMIKMOD_REVISION is equal to the revision number of the library.

• LIBMIKMOD_VERSION is the sum of LIBMIKMOD_VERSION_MAJOR shifted 16 times,
LIBMIKMOD_VERSION_MINOR shifted 8 times, and LIBMIKMOD_REVISION.

So your program can tell with which version of the library it has been compiled this way:

printf("Compiled with MikMod Sound Library version %ld.%ld.%ld\n",
LIBMIKMOD_VERSION_MAJOR,
LIBMIKMOD_VERSION_MINOR,
LIBMIKMOD_REVISION);

The library defines the function MikMod_GetVersion which returns the value of LIB-
MIKMOD VERSION for the library. If this value is greater than or equal to the value of
LIBMIKMOD VERSION for your program, your program will work; otherwise, you’ll have
to inform the user that he has to upgrade the library:

{
long engineversion = MikMod_GetVersion();

if (engineversion < LIBMIKMOD_VERSION) {
printf("MikMod library version (%ld.%ld.%ld) is too old.\n",

(engineversion >> 16) & 255,
(engineversion >> 8) & 255,
(engineversion) & 255);

printf("This programs requires at least version %ld.%ld.%ld\n",
LIBMIKMOD_VERSION_MAJOR,
LIBMIKMOD_VERSION_MINOR,
LIBMIKMOD_REVISION);

puts("Please upgrade your MikMod library.");
exit(1);

}
}

Chapter 3: Using the Library 9

3.2 Type Definitions

MikMod defines several data types to deal with modules and sample data. These types
have the same memory size on every platform MikMod has been ported to.

These types are:
• CHAR is a printable character. For now it is the same as the char type, but in the future

it may be wide char (Unicode) on some platforms.
• SBYTE is a signed 8 bit number (can range from -128 to 127).
• UBYTE is an unsigned 8 bit number (can range from 0 to 255).
• SWORD is a signed 16 bit number (can range from -32768 to 32767).
• UWORD is an unsigned 16 bit number (can range from 0 to 65535).
• SLONG is a signed 32 bit number (can range from -2.147.483.648 to 2.147.483.647).
• ULONG is an unsigned 32 bit number (can range from 0 to 4.294.967.296).
• BOOL is a boolean value. A value of 0 means false, any other value means true.

3.3 Error Handling

Although MikMod does its best to do its work, there are times where it can’t. For example,
if you’re trying to play a corrupted file, well, it can’t.

A lot of MikMod functions return pointers or BOOL values. If the pointer is NULL or the
BOOL is 0 (false), an error has occurred.

MikMod errors are returned in the variable MikMod_errno. Each possible error has a
symbolic error code, beginning with MMERR_. For example, if MikMod can’t open a file,
MikMod_errno will receive the value MMERR_OPENING_FILE.

You can get an appropriate error message to display from the function MikMod_strerror.
There is a second error variable named MikMod_critical. As its name suggests, it is

only set if the error lets the library in an unstable state. This variable can only be set by the
functions MikMod_Init, MikMod_SetNumVoices and MikMod_EnableOutput. If one of these
functions return an error and MikMod_critical is set, the library is left in the uninitialized
state (i.e. it was not initialized, or MikMod_Exit was called).

If you prefer, you can use a callback function to get notified of errors. This function
must be prototyped as void MyFunction(void). Then, call MikMod_RegisterHandler with
your function as argument to have it notified when an error occurs. There can only be one
callback function registered, but MikMod_RegisterHandler will return you the previous
handler, so you can chain handlers if you want to.

3.4 Library Initialization and Core Functions

To initialize the library, you must register some sound drivers first. You can either register all
the drivers embedded in the library for your platform with MikMod_RegisterAllDrivers,
or register only some of them with MikMod_RegisterDriver. If you choose to register the
drivers manually, you must be careful in their order, since MikMod_Init will try them in
the order you registered them. The MikMod_RegisterAllDrivers function registers the
network drivers first (for playing sound over the network), then the hardware drivers, then
the disk writers, and in last resort, the nosound driver. Registering the nosound driver first
would not be a very good idea. . .

Chapter 3: Using the Library 10

You can get some printable information regarding the registered drivers with MikMod_
InfoDriver; don’t forget to call free on the returned string when you don’t need it any-
more.

After you’ve registered your drivers, you can initialize the sound playback with MikMod_
Init, passing specific information to the driver if necessary. If you set the variable md_
device to zero, which is its default value, the driver will be autodetected, that is, the first
driver in the list that is available on the system will be used; otherwise only the driver
whose order in the list of the registered drivers is equal to md_device will be tried. If
your playback settings, in the variables md_mixfreq and md_mode, are not supported by the
device, MikMod_Init will fail.

You can then choose the number of voices you need with MikMod_SetNumVoices, and
activate the playback with MikMod_EnableOutput.

Don’t forget to call MikMod_Update as often as possible to process the sound mixing. If
necessary, fork a dedicated process to do this, or if the library is thread-safe on your system,
use a dedicated thread.

If you want to change playback settings, most of them can’t be changed on the fly. You’ll
need to stop the playback and reinitialize the driver. Use MikMod_Active to check if there
is still sound playing; in this case, call MikMod_DisableOutput to end playback. Then,
change your settings and call MikMod_Reset. You’re now ready to select your number of
voices and restart playback.

When your program ends, don’t forget to stop playback and call MikMod_Exit to leave
the sound hardware in a coherent state.

On systems that have pthreads, libmikmod is thread-safe1. You can check this in your
programs with the MikMod_InitThreads function. If this function returns 1, the library is
thread-safe.

The main benefit of thread-safety is that MikMod_Update can be called from a separate
thread, which often makes application design easier. However, several libmikmod global
variables are accessible from all your threads, so when more than one thread need to access
libmikmod variables, you’ll have to protect these access with the MikMod_Lock and MikMod_
Unlock functions. If libmikmod is not thread-safe, these functions are no-ops.

3.5 Samples and Voice Control

Currently, MikMod only supports uncompressed mono WAV files as samples. You can load
a sample by calling Sample_Load with a filename, or by calling Sample_LoadFP with an
open FILE* pointer. These functions return a pointer to a SAMPLE structure, or NULL in
case of error.

The SAMPLE structure has a few interesting fields:
− speed contains the default frequency of the sample.
− volume contains the default volume of the sample, ranging from 0 (silence) to 64.
− panning contains the default panning position of the sample.

Altering one of those fields will affect all voices currently playing the sample. You
can achieve the same result on a single voice with the functions Voice_SetFrequency,

1 Unless you explicitely choose to create a non thread-safe version of libmikmod at compile-time.

Chapter 3: Using the Library 11

Voice_SetVolume and Voice_SetPanning. Since the same sample can be played with
different frequency, volume and panning parameters on each voice, you can get voice specific
information with Voice_GetFrequency, Voice_GetVolume and Voice_GetPanning.

You can also make your sample loop by setting the fields loopstart and loopend and
or’ing flags with SF_LOOP. To compute your loop values, the field length will be useful.
However, you must know that all the sample length are expressed in samples, i.e. 8 bits for
an 8 bit sample, and 16 bit for a 16 bit sample. . . Test flags for the value SF_16BITS to
know this.

Speaking of flags, if you’re curious and want to know the original format of the sample on
disk (since libmikmod does some work on the sample data internally), refer to the inflags
field.

If the common forward loop isn’t enough, you can play with some other flags: SF_BIDI
will make your sample loop “ping pong” (back and forth), and SF_REVERSE will make it
play backwards.

To play your sample, use the Sample_Play function. This function will return a voice
number which enable you to use the Voice_xx functions.

The sample will play until another sample takes over its voice (when you play more
samples than you reserved sound effect voices), unless it has been flagged as SFX_CRITICAL.
You can force it to stop with Voice_Stop, or you can force another sample to take over
this voice with Voice_Play; however Voice_Play doesn’t let you flag the new sample as
critical.

Non looping samples will free their voice channel as soon as they are finished; you can
know the current playback position of your sample with Voice_GetPosition. If it is zero,
either the sample has finished playing or it is just beginning; use Voice_Stopped to know.

When you don’t need a sample anymore, don’t forget to free its memory with Sample_
Free.

3.6 Modules and Player Control

As for the sound drivers, you have to register the module loaders you want to use for
MikMod to be able to load modules. You can either register all the module loaders with
MikMod_RegisterAllLoaders, or only a few of them with MikMod_RegisterLoader. Be
careful if you choose this solution, as the 15 instrument MOD loader has to be registered
last, since loaders are called in the order they were register to identify modules, and the
detection of this format is not fully reliable, so other modules might be mistaken as 15
instrument MOD files.

You can get some printable information regarding the registered loaders with MikMod_
InfoLoader; don’t forget to call free on the returned string when you don’t need it any-
more.

Note that, contrary to the sound drivers, you can register module loaders at any time,
it doesn’t matter.

For playlists, you might be interested in knowing the module title first, and Player_
LoadTitle will give you this information. Don’t forget to free the returned text when you
don’t need it anymore.

Chapter 3: Using the Library 12

You can load a module either with Player_Load and the name of the module, or with
Player_LoadFP and an open FILE* pointer. These functions also expect a maximal number
of voices, and a curiosity flag. Unless you have excellent reasons not to do so, choose a big
limit, such as 64 or even 128 for complex Impulse Tracker modules. Both functions return
a pointer to an MODULE structure, or NULL if an error occurs.

You’ll find some useful information in this structure:

− numchn contains the number of module “real” channels.

− numvoices contains the number of voices reserved by the player for the real channels
and the virtual channels (NNA).

− numpas and numpat contain the number of song positions and song patterns.

− numins and numsmp contain the number of instruments and samples.

− songname contains the song title.

− modtype contains the name of the tracker used to create the song.

− comment contains the song comment, if it has one.

− sngtime contains the time elapsed in the module, in 2−10 seconds (not exactly a
millisecond).

− sngspd and bpm contain the song speed and tempo.

− realchn contains the actual number of active channels.

− totalchn contains the actual number of active virtual channels, i.e. the sum of realchn
and the number of NNA virtual channels.

Now that the module is loaded, you need to tell the module player that you want to
play this particular module with Player_Start (the player can only play one module, but
you can have several modules in memory). The playback begins. Should you forget which
module is playing, Player_GetModule will return it to you.

You can change the current song position with the functions Player_NextPosition,
Player_PrevPosition and Player_SetPosition, the speed with Player_SetSpeed and
Player_SetTempo, and the volume (ranging from 0 to 128) with Player_SetVolume.

Playback can be paused or resumed with Player_TogglePause. Be sure to check with
Player_Paused that it isn’t already in the state you want !

Fine player control is achieved by the functions Player_Mute, Player_UnMute and
Player_ToggleMute which can silence or resume a set of module channels. The function
Player_Muted will return the state of a given channel. And if you want even more control,
you can get the voice corresponding to a module channel with Player_GetChannelVoice
and act directly on the voice.

Modules play only once, but can loop indefinitely if they are designed to do so. You can
change this behavior with the wrap and loop of the MODULE structure; the first one, if set,
will make the module restart when it’s finished, and the second one, if set, will prevent the
module from jumping backwards.

You can test if the module is still playing with Player_Active, and you can stop it at
any time with Player_Stop. When the module isn’t needed anymore, get rid of it with
Player_Free.

Chapter 3: Using the Library 13

3.7 Loading Data from Memory

If you need to load modules or sound effects from other places than plain files, you can use
the MREADER and MWRITER objects to achieve this.

The MREADER and MWRITER structures contain a list of function pointers, which emulate
the behaviour of a regular FILE * object. In fact, all functions which take filenames or FILE
* as arguments are only wrappers to a real function which takes an MREADER or an MWRITER
argument.

So, if you need to load a module from memory, or for a multi-file archive, for example, all
you need is to build an adequate MREADER object, and use Player_LoadGeneric instead of
Player_Load or Player_LoadFP. For samples, use Sample_LoadGeneric instead of Sample_
Load or Sample_LoadFP.

Chapter 4: Library Reference 14

4 Library Reference

This chapter describes in more detail all the functions and variables provided by the library.
See Section 3.2 [Type Definitions], page 9, for the basic type reference.

4.1 Variable Reference

4.1.1 Error Variables

The following variables are set by the library to return error information.

int MikMod_errno
When an error occurs, this variable contains the error code. See Section 4.3
[Error Reference], page 21, for more information.

BOOL MikMod_critical
When an error occurs, this variable informs of the severity of the error. Its
value has sense only if the value of MikMod_errno is different from zero. If the
value of MikMod_critical is zero, the error wasn’t fatal and the library is in
a stable state. However, if it is nonzero, then the library can’t be used and
has reseted itself to the uninitialized state. This often means that the mixing
parameters you choose were not supported by the driver, or that it doesn’t has
enough voices for your needs if you called MikMod_SetNumVoices.

4.1.2 Sound Settings

The following variables control the sound output parameters and their changes take effect
immediately.

UBYTE md_musicvolume
Volume of the module. Allowed values range from 0 to 128. The default value
is 128.

UBYTE md_pansep
Stereo channels separation. Allowed values range from 0 (no separation, thus
mono sound) to 128 (full channel separation). The default value is 128.

UBYTE md_reverb
Amount of sound reverberation. Allowed values range from 0 (no reverberation)
to 15 (a rough estimate for chaos. . .). The default value is 0.

UBYTE md_sndfxvolume
Volume of the sound effects. Allowed values range from 0 to 128. The default
value is 128.

UBYTE md_volume
Overall sound volume. Allowed values range from 0 to 128. The default value
is 128.

4.1.3 Driver Settings

The following variables control more in-depth sound output parameters. Except for some
md_mode flags, their changes do not have any effect until you call MikMod_Init or MikMod_
Reset.

Chapter 4: Library Reference 15

UWORD md_device
This variable contains the order, in the list of the registered drivers, of the
sound driver which will be used for sound playback. This order is one-based;
if this variable is set to zero, the driver is autodetected, which means the list
is tested until a driver is present on the system. The default value is 0, thus
driver is autodetected.

MDRIVER* md_driver
This variable points to the driver which is being used for sound playback, and
is undefined when the library is uninitialized (before MikMod_Init and after
MikMod_Exit). This variable is for information only, you should never attempt
to change its value. Use md_driver and MikMod_Init (or MikMod_Reset) in-
stead.

UWORD md_mixfreq
Sound playback frequency, in hertz. High values yield high sound quality, but
need more computing power than lower values. The default value is 44100
Hz, which is compact disc quality. Other common values are 22100 Hz (radio
quality), 11025 Hz (phone quality), and 8000 Hz (mu-law quality).

UWORD md_mode
This variable is a combination of several flags, to select which output mode to
select. The following flags have a direct action to the sound output (i.e. changes
take effect immediately):

‘DMODE_INTERP’
This flag, if set, enables the interpolated mixers. Interpolated mix-
ing gives better sound but takes a bit more time than standard
mixing. If the library is built with the high quality mixer, interpo-
lated mixing is always enabled, regardless of this flag.

‘DMODE_REVERSE’
This flag, if set, exchanges the left and right stereo channels.

‘DMODE_SURROUND’
This flag, if set, enables the surround mixers. Since surround mix-
ing works only for stereo sound, this flag has no effect if the sound
playback is in mono.

The following flags aren’t taken in account until the sound driver is changed or
reset:

‘DMODE_16BIT’
This flag, if set, selects 16 bit sound mode. This mode yields better
sound quality, but needs twice more mixing time.

‘DMODE_HQMIXER’
This flag, if set, selects the high-quality software mixer. This mode
yields better sound quality, but needs more mixing time. Of course,
this flag has no effect if no DMODE_SOFT_xx flag is set.

‘DMODE_SOFT_MUSIC’
This flag, if set, selects software mixing of the module.

Chapter 4: Library Reference 16

‘DMODE_SOFT_SNDFX’
This flag, if set, selects software mixing of the sound effects.

‘DMODE_STEREO’
This flag, if set, selects stereo sound.

The default value of this variable is ‘DMODE_STEREO | DMODE_SURROUND |
DMODE_16BITS | DMODE_SOFT_MUSIC | DMODE_SOFT_SNDFX’.

4.2 Structure Reference

Only the useful fields are described here; if a structure field is not described, you must
assume that it’s an internal field which must not be modified.

4.2.1 Drivers

The MDRIVER structure is not meant to be used by anything else than the core of the library,
but its first four fields contain useful information for your programs:

CHAR* Name
Name of the driver, usually never more than 20 characters.

CHAR* Description
Description of the driver, usually never more than 50 characters.

UBYTE HardVoiceLimit
Maximum number of hardware voices for this driver, 0 if the driver has no
hardware mixing support.

UBYTE SoftVoiceLimit
Maximum number of software voices for this driver, 0 if the driver has no
software mixing support.

CHAR* Alias
A short name for the driver, without spaces, usually never more than 10 char-
acters.

4.2.2 Modules

The MODULE structure gathers all the necessary information needed to play a module file,
regardless of its initial format.

4.2.2.1 General Module Information

The fields described in this section contain general information about the module and should
not be modified.

CHAR* songname
Name of the module.

CHAR* modtype
Type of the module (which tracker format).

CHAR* comment
Either the module comments, or NULL if the module doesn’t have comments.

Chapter 4: Library Reference 17

UWORD flags
Several module flags or’ed together.

‘UF_ARPMEM’
If set, arpeggio effects have memory.

‘UF_BGSLIDES’
If set, volume slide effects continue until a new note or a new effect
is played.

‘UF_HIGHBPM’
If set, the module is allowed to have its tempo value (bpm) over
255.

‘UF_INST’ If set, the module has instruments and samples; otherwise, the
module has only samples.

‘UF_LINEAR’
If set, slide periods are linear; otherwise, they are logarithmic.

‘UF_NNA’ If set, module uses new note actions (NNA) and the numvoices
field is valid.

‘UF_NOWRAP’
If set, pattern break on the last pattern does not continue to the
first pattern.

‘UF_S3MSLIDES’
If set, module uses old-S3M style volume slides (slides processed
every tick); otherwise, it uses the standard style (slides processed
every tick except the first).

‘UF_XMPERIODS’
If set, module uses XM-type periods; otherwise, it uses Amiga pe-
riods.

‘UF_FT2QUIRKS’
If set, module player will reproduce some FastTracker 2 quirks dur-
ing playback.

‘UF_PANNING’
If set, module use panning commands.

UBYTE numchn
The number of channels in the module.

UBYTE numvoices
If the module uses NNA, and this variable is not zero, it contains the limit
of module voices; otherwise, the limit is set to the maxchan parameter of the
Player_Loadxx functions.

UWORD numpos
The number of sound positions in the module.

UWORD numpat
The number of patterns.

Chapter 4: Library Reference 18

UWORD numins
The number of instruments.

UWORD numsmp
The number of samples.

INSTRUMENT* instruments
Points to an array of instrument structures.

SAMPLE* samples
Points to an array of sample structures.

UBYTE realchn
During playback, this variable contains the number of active channels (not
counting NNA channels).

UBYTE totalchn
During playback, this variable contains the total number of channels (including
NNA channels).

ULONG sngtime
Elapsed song time, in 2−10 seconds units (not exactly a millisecond). To convert
this value to seconds, divide by 1024, not 1000 !

4.2.2.2 Playback Settings

The fields described here control the module playback and can be modified at any time,
unless otherwise specified.

UBYTE initspeed
The initial speed of the module (Protracker compatible). Valid range is 1-32.

UBYTE inittempo
The initial tempo of the module (Protracker compatible). Valid range is 32-255.

UBYTE initvolume
The initial overall volume of the module. Valid range is 0-128.

UWORD panning[]
The current channel panning positions. Only the first numchn values are defined.

UBYTE chanvol[]
The current channel volumes. Only the first numchn values are defined.

UWORD bpm The current tempo of the module. Use Player_SetTempo to change its value.

UBYTE sngspd
The current speed of the module. Use Player_SetSpeed to change its value.

UBYTE volume
The current overall volume of the module, in range 0-128. Use
Player_SetVolume to change its value.

BOOL extspd
If zero, Protracker extended speed effect (in-module tempo modification) is not
processed. The default value is 1, which causes this effect to be processed. How-
ever, some old modules might not play correctly if this effect is not neutralized.

Chapter 4: Library Reference 19

BOOL panflag
If zero, panning effects are not processed. The default value is 1, which cause
all panning effects to be processed. However, some old modules might not play
correctly if panning is not neutralized.

BOOL wrap If nonzero, module wraps to its restart position when it is finished, to play
continuously. Default value is zero (play only once).

UBYTE reppos
The restart position of the module, when it wraps.

BOOL loop If nonzero, all in-module loops are processed; otherwise, backward loops which
decrease the current position are not processed (i.e. only forward loops, and
backward loops in the same pattern, are processed). This ensures that the
module never loops endlessly. The default value is 1 (all loops are processed).

BOOL fadeout
If nonzero, volume fades out during when last position of the module is being
played. Default value us zero (no fadeout).

UWORD patpos
Current position (row) in the pattern being played. Must not be changed.

SWORD sngpos
Current song position. Do not change this variable directly, use Player_
NextPosition, Player_PrevPosition or Player_SetPosition instead.

SWORD relspd
Relative playback speed. The value of this variable is added to the module
tempo to define the actual playback speed. The default value is 0, which make
modules play at their intended speed.

4.2.3 Module Instruments

Although the INSTRUMENT structure is intended for internal use, you might need to know
its name:

CHAR* insname
The instrument text, theoretically its name, but often a message line.

4.2.4 Samples

The SAMPLE structure is used for sound effects and module samples as well. You can play
with the following fields:

SWORD panning
Panning value of the sample. Valid values range from PAN LEFT (0) to
PAN RIGHT (255), or PAN SURROUND.

ULONG speed
Playing frequency of the sample, it hertz.

UBYTE volume
Sample volume. Valid range is 0-64.

Chapter 4: Library Reference 20

UWORD flags
Several format flags or’ed together describing the format of the sample in mem-
ory.
Format flags:

‘SF_16BITS’
If set, sample data is 16 bit wide; otherwise, it is 8 bit wide.

‘SF_BIG_ENDIAN’
If set, sample data is in big–endian (Motorola) format; otherwise,
it is in little–endian (Intel) format.

‘SF_DELTA’
If set, sample is stored as delta values (differences between two
consecutive samples); otherwise, sample is stored as sample values.

‘SF_ITPACKED’
If set, sample data is packed with Impulse Tracker’s compression
method; otherwise, sample is not packed.

‘SF_SIGNED’
If set, sample data is made of signed values; otherwise, it is made
of unsigned values.

‘SF_STEREO’
If set, sample data is stereo (two channels); otherwise, it is mono.

Playback flags:

‘SF_BIDI’ If set, sample loops “ping pong” (back and forth).

‘SF_LOOP’ If set, sample loops forward.

‘SF_REVERSE’
If set, sample plays backwards.

UWORD inflags
Same as “flags”, but describing the format of the sample on disk.

ULONG length
Length of the sample, in samples. The length of a sample is 8 bits (1 byte) for
a 8 bit sample, and 16 bits (2 bytes) for a 16 bit sample.

ULONG loopstart
Loop starting position, relative to the start of the sample, in samples.

ULONG loopend
Loop ending position, relative to the start of the sample, in samples.

4.2.5 MREADER

The MREADER contains the following function pointers:

int (*Seek)(struct MREADER*, long offset, int whence)
This function should have the same behaviour as fseek, with offset 0 meaning
the start of the object (module, sample) being loaded.

Chapter 4: Library Reference 21

long (*Tell)(struct MREADER*)
This function should have the same behaviour as ftell, with offset 0 meaning
the start of the object being loaded.

BOOL (*Read)(struct MREADER*, void *dest, size_t length)
This function should copy length bytes of data into dest, and return zero if
an error occured, and any nonzero value otherwise. Note that an end-of-file
condition will not be considered as an error in this case.

int (*Get)(struct MREADER*)
This function should have the same behaviour as fgetc.

BOOL (*Eof)(struct MREADER*)
This function should have the same behaviour as feof.

For an example of how to build an MREADER object, please refer to the MFILEREADER
object in file mmio/mmio.c in the library sources.

4.2.6 MWRITER

The MWRITER contains the following function pointers:

int (*Seek)(struct MWRITER*, long offset, int whence);
This function should have the same behaviour as fseek, with offset 0 meaning
the start of the object being written.

long (*Tell)(struct MWRITER*);
This function should have the same behaviour as ftell, with offset 0 meaning
the start of the object being written.

BOOL (*Write)(struct MWRITER*, void *src, size_t length);
This function should copy length bytes of data from src, and return zero if an
error occured, and any nonzero value otherwise.

int (*Put)(struct MWRITER*, int data);
This function should have the same behaviour as fputc.

For an example of how to build an MWRITER object, please refer to the MFILEWRITER
object in file mmio/mmio.c in the library sources.

4.3 Error Reference

The following errors are currently defined:

4.3.1 General Errors

‘MMERR_DYNAMIC_LINKING’
This error occurs when a specific driver was requested, but the support shared
library couldn’t be loaded. Currently, the only drivers which can yield this error
are the ALSA, EsounD and Ultra drivers.

‘MMERR_OPENING_FILE’
This error occurs when a file can not be opened, either for read access from a
xx_Loadxx function, or for write access from the disk writer drivers.

Chapter 4: Library Reference 22

‘MMERR_OUT_OF_MEMORY’
This error occurs when there is not enough virtual memory available to complete
the operation, or there is enough memory but the calling process would exceed
its memory limit. MikMod does not do any resource tuning, your program has
to use the setrlimit function to do this if it needs to load very huge samples.

4.3.2 Sample Errors

‘MMERR_SAMPLE_TOO_BIG’
This error occurs when the memory allocation of the sample data yields the
error MMERR_OUT_OF_MEMORY.

‘MMERR_OUT_OF_HANDLES’
This error occurs when your program reaches the limit of loaded samples, cur-
rently defined as 384, which should be sufficient for most cases.

‘MMERR_UNKNOWN_WAVE_TYPE’
This error occurs when you’re trying to load a sample which format is not
recognized.

4.3.3 Module Errors

‘MMERR_ITPACK_INVALID_DATA’
This error occurs when a compressed module sample is corrupt.

‘MMERR_LOADING_HEADER’
This error occurs when you’re trying to load a module which has a corrupted
header, or is truncated.

‘MMERR_LOADING_PATTERN’
This error occurs when you’re trying to load a module which has corrupted
pattern data, or is truncated.

‘MMERR_LOADING_SAMPLEINFO’
This error occurs when you’re trying to load a module which has corrupted
sample information, or is truncated.

‘MMERR_LOADING_TRACK’
This error occurs when you’re trying to load a module which has corrupted
track data, or is truncated.

‘MMERR_MED_SYNTHSAMPLES’
This error occurs when you’re trying to load a MED module which has synth-
sounds samples, which are currently not supported.1

‘MMERR_NOT_A_MODULE’
This error occurs when you’re trying to load a module which format is not
recognized.

‘MMERR_NOT_A_STREAM’
This error occurs when you’re trying to load a sample with a sample which
format is not recognized.

1 You can force libmikmod to load the module (without the synthsounds, of course) by setting the curious
parameter to 1 when invoking Player_Loadxx.

Chapter 4: Library Reference 23

4.3.4 Driver Errors

Generic driver errors

‘MMERR_16BIT_ONLY’
This error occurs when the sound device doesn’t support non-16 bit linear sound
output, which are the requested settings.

‘MMERR_8BIT_ONLY’
This error occurs when the sound device doesn’t support non-8 bit linear sound
output, which are the requested settings.

‘MMERR_DETECTING_DEVICE’
This error occurs when the driver’s sound device has not been detected.

‘MMERR_INITIALIZING_MIXER’
This error occurs when MikMod’s internal software mixer could not be initial-
ized properly.

‘MMERR_INVALID_DEVICE’
This error occurs when the driver number (in md_device) is out of range.

‘MMERR_NON_BLOCK’
This error occurs when the driver is unable to set the audio device in non
blocking mode.

‘MMERR_OPENING_AUDIO’
This error occurs when the driver can not open sound device.

‘MMERR_STEREO_ONLY’
This error occurs when the sound device doesn’t support mono sound output,
which is the requested setting.

‘MMERR_ULAW’
This error occurs when the sound device only supports uLaw output (which
implies mono, 8 bit, and 8000 Hz sampling rate), which isn’t the requested
setting.

AudioFile driver specific error

‘MMERR_AF_AUDIO_PORT’
This error occurs when the AudioFile driver can not find a suitable AudioFile
port.

AIX driver specific errors

‘MMERR_AIX_CONFIG_CONTROL’
This error occurs when the “Control” step of the device configuration has failed.

‘MMERR_AIX_CONFIG_INIT’
This error occurs when the “Init” step of the device configuration has failed.

‘MMERR_AIX_CONFIG_START’
This error occurs when the “Start” step of the device configuration has failed.

Ultra driver specific errors

Chapter 4: Library Reference 24

‘MMERR_GUS_RESET’
This error occurs when the sound device couldn’t be reset.

‘MMERR_GUS_SETTINGS’
This error occurs because the sound device only works in 16 bit linear stereo
sound at 44100 Hz, which is not the requested settings.

‘MMERR_GUS_TIMER’
This error occurs when the ultra driver could not setup the playback timer.

HP-UX driver specific errors

‘MMERR_HP_AUDIO_DESC’
This error occurs when the HP driver can not get the audio hardware descrip-
tion.

‘MMERR_HP_AUDIO_OUTPUT’
This error occurs when the HP driver can not select the audio output.

‘MMERR_HP_BUFFERSIZE’
This error occurs when the HP driver can not set the transmission buffer size.

‘MMERR_HP_CHANNELS’
This error occurs when the HP driver can not set the requested number of
channels.

‘MMERR_HP_SETSAMPLESIZE’
This error occurs when the HP driver can not set the requested sample size.

‘MMERR_HP_SETSPEED’
This error occurs when the HP driver can not set the requested sample rate.

ALSA driver specific errors

‘MMERR_ALSA_NOCONFIG’
This error occurs when no ALSA playback configuration is available.

‘MMERR_ALSA_SETPARAMS’
This error occurs when the ALSA driver can not set the requested sample
format, sample rate, number of channels, access type, or latency values.

‘MMERR_ALSA_SETFORMAT’
This error occurs when the ALSA driver can not set the requested sample
format.

‘MMERR_ALSA_SETRATE’
This error occurs when the ALSA driver does not support the requested sample
rate.

‘MMERR_ALSA_SETCHANNELS’
This error occurs when the ALSA driver does not support the requested number
of channels.

‘MMERR_ALSA_BUFFERSIZE’
This error occurs when the ALSA driver can not retrieve the buffer or period
size.

Chapter 4: Library Reference 25

‘MMERR_ALSA_PCM_START’
This error occurs when the ALSA driver can not start the pcm playback.

‘MMERR_ALSA_PCM_WRITE’
This error occurs when the ALSA driver encounters a write error.

‘MMERR_ALSA_PCM_RECOVER’
This error occurs when the ALSA driver encounters an error recovery failure.

Open Sound System driver specific errors

‘MMERR_OSS_SETFRAGMENT’
This error occurs when the OSS driver can not set audio fragment size.

‘MMERR_OSS_SETSAMPLESIZE’
This error occurs when the OSS driver can not set the requested sample size.

‘MMERR_OSS_SETSPEED’
This error occurs when the OSS driver can not set the requested sample rate.

‘MMERR_OSS_SETSTEREO’
This error occurs when the OSS driver can not set the requested number of
channels.

SGI driver specific errors

‘MMERR_SGI_MONO’
This error occurs when the hardware only supports stereo sound.

‘MMERR_SGI_SPEED’
This error occurs when the hardware does not support the requested sample
rate.

‘MMERR_SGI_STEREO’
This error occurs when the hardware only supports mono sound.

‘MMERR_SGI_16BIT’
This error occurs when the hardware only supports 16 bit sound.

‘MMERR_SGI_8BIT’
This error occurs when the hardware only supports 8 bit sound.

Sun driver specific error

‘MMERR_SUN_INIT’
This error occurs when the sound device initialization failed.

OS/2 driver specific errors

‘MMERR_OS2_MIXSETUP’
This error occurs when the DART driver can not set the mixing parameters.

‘MMERR_OS2_SEMAPHORE’
This error occurs when the MMPM/2 driver can not create the semaphores
needed for playback.

Chapter 4: Library Reference 26

‘MMERR_OS2_THREAD’
This error occurs when the MMPM/2 driver can not create the thread needed
for playback.

‘MMERR_OS2_TIMER’
This error occurs when the MMPM/2 driver can not create the timer needed
for playback.

DirectX Driver Specific Errors

‘MMERR_DS_BUFFER’
This error occurs when the DirectX driver can not allocate the playback buffers.

‘MMERR_DS_EVENT’
This error occurs when the DirectX driver can not register the playback event.

‘MMERR_DS_FORMAT’
This error occurs when the DirectX driver can not set the playback format.

‘MMERR_DS_NOTIFY’
This error occurs when the DirectX driver can not register the playback call-
back.

‘MMERR_DS_PRIORITY’
This error occurs when the DirectX driver can not set the playback priority.

‘MMERR_DS_THREAD’
This error occurs when the DirectX driver can not create the playback thread.

‘MMERR_DS_UPDATE’
This error occurs when the DirectX driver can not initialize the playback thread.

Windows Multimedia API Driver Specific Errors

‘MMERR_WINMM_ALLOCATED’
This error occurs when the playback resource is already allocated by another
application.

‘MMERR_WINMM_DEVICEID’
This error occurs when the Multimedia API Driver is given an invalid audio
device identificator.

‘MMERR_WINMM_FORMAT’
This error occurs when the playback output format is not supported by the
audio device.

‘MMERR_WINMM_HANDLE’
This error occurs when the Multimedia API Driver is given an invalid handle.

‘MMERR_WINMM_UNKNOWN’
This error should not occur ! If you get this error, please contact the libmikmod
development mailing list.

MacOS Driver Specific Errors

‘MMERR_MAC_SPEED’
This error occurs when the playback speed is not supported by the audio device.

Chapter 4: Library Reference 27

‘MMERR_MAC_START’
This error occurs when the MacOS driver can not start playback.

4.4 Function Reference

4.4.1 Library Core Functions

BOOL MikMod_Active(void)

Description
This function returns whether sound output is enabled or not.

Result
0 Sound output is disabled.

1 Sound output is enabled.

Notes Calls to MikMod_Update will be ignored when sound output is disabled.

See also MikMod_DisableOutput, MikMod_EnableOutput.

void MikMod_DisableOutput(void)

Description
This function stops the sound mixing.

Notes Calls to MikMod_Update will be ignored when sound output is disabled.

See also MikMod_Active, MikMod_EnableOutput.

int MikMod_EnableOutput(void)

Description
This function starts the sound mixing.

Result
0 Sound mixing is ready.

nonzero An error occurred during the operation.

Notes Calls to MikMod_Update will be ignored when sound output is disabled.

See also MikMod_Active, MikMod_DisableOutput.

void MikMod_Exit(void)

Description
This function deinitializes the sound hardware and frees all the memory and
resources used by MikMod.

See also MikMod_Init, MikMod_Reset.

long MikMod_GetVersion(void)

Description
This function returns the version number of the library.

Result The version number, encoded as follows: (maj<<16)|(min<<8)|(rev), where
‘maj’ is the major version number, ‘min’ is the minor version number, and ‘rev’
is the revision number.

Chapter 4: Library Reference 28

CHAR* MikMod_InfoDriver(void)

Description
This function returns a formatted list of the registered drivers in a buffer.

Result A pointer to a text buffer, or NULL if no drivers are registered.

Notes The buffer is created with malloc; the caller must free it when it is no longer
necessary.

See also MikMod_RegisterDriver, MikMod_RegisterAllDrivers.

CHAR* MikMod_InfoLoader(void)

Description
This function returns a formatted list of the registered module loaders in a
buffer.

Result A pointer to a text buffer, or NULL if no loaders are registered.

Notes The buffer is created with malloc; the caller must free it when it is no longer
necessary.

See also MikMod_RegisterLoader, MikMod_RegisterAllLoaders.

int MikMod_Init(CHAR *parameters)

Description
This function performs the library initialization, including the sound driver
choice and configuration, and all the necessary memory allocations.

Parameters
parameters

Optional parameters given to the sound driver. These parameters are ignored
if the value of md_device is zero (autodetection).

Result
0 Initialization was successful.

nonzero An error occurred during initialization.

Notes When the initialization fails, the library uses the nosound sound driver to let
other the other MikMod functions work without crashing the application.

See also MikMod_Exit, MikMod_InitThreads, MikMod_Reset.

BOOL MikMod_InitThreads(void)

Description
This function returns whether libmikmod is thread-safe.

Result
0 The library is not thread-safe.

1 The library is thread-safe.

Notes This function should be called before any call to MikMod_Lock or MikMod_
Unlock is made.

Chapter 4: Library Reference 29

See also MikMod_Lock, MikMod_Unlock.

void MikMod_Lock(void)

Description
This function obtains exclusive access to libmikmod’s variables.

Notes This function locks an internal mutex. If the mutex is already locked, it will
block the calling thread until the mutex is unlocked.
Every MikMod_Unlock call should be associated to a MikMod_Lock call. To be
sure this is the case, we advise you to define and use the following macros:
#define MIKMOD_LOCK MikMod_Lock();{
#define MIKMOD_UNLOCK }MikMod_Unlock();
The function MikMod_InitThreads must have been invoked before any call to
MikMod_Lock in made.

See also MikMod_InitThreads, MikMod_Unlock.

void MikMod_RegisterAllDrivers(void)

Description
This function registers all the available drivers.

See also MikMod_InfoDriver, MikMod_RegisterDriver.

void MikMod_RegisterAllLoaders(void)

Description
This function registers all the available module loaders.

See also MikMod_InfoLoader, MikMod_RegisterLoader.

void MikMod_RegisterDriver(struct MDRIVER* newdriver)

Description
This function adds the specified driver to the internal list of usable drivers.

Parameters
newdriver A pointer to the MDRIVER structure identifying the driver.

Notes It is safe to register the same driver several times, although it will not be
duplicated in the list.
You should register all the drivers you need before calling MikMod_Init. If
you want to register all the available drivers, use MikMod_RegisterAllDrivers
instead.

See also MikMod_InfoDriver, MikMod_RegisterAllDrivers.

MikMod_handler_t MikMod_RegisterErrorHandler(MikMod_handler_t newhandler)

Description
This function selects the function which should be called in case of error.

Parameters
newhandler

The new error callback function.

Chapter 4: Library Reference 30

Result The previous error callback function, or NULL if there was none.

Notes MikMod_handler_t is defined as void(*function)(void), this means your er-
ror function has the following prototype: void MyErrorHandler(void)
The error callback function is called when errors are detected, but not always
immediately (the library has to resume to a stable state before calling your
callback).

void MikMod_RegisterLoader(struct MLOADER* newloader)

Description
This function adds the specified module loader to the internal list of usable
module loaders.

Parameters
newloader A pointer to the MLOADER structure identifying the loader.

Notes It is safe to register the same loader several times, although it will not be
duplicated in the list.
You should register all the loaders you need before calling Player_Load or
Player_LoadFP. If you want to register all the available module loaders, use
MikMod_RegisterAllLoaders instead.
The 15 instrument module loader (load_m15) should always be registered last.

See also MikMod_InfoLoader, MikMod_RegisterAllLoaders.

MikMod_player_t MikMod_RegisterPlayer(MikMod_player_t newplayer)

Description
This function selects the function which should be used to process module
playback.

Parameters
newplayer The new playback function

Result The previous playback function.

Notes MikMod_player_t is defined as void(*function)(void), this means your
player function has the following prototype: void MyPlayer(void)
The player function is called every module tick to process module playback.
The rate at which the player function is called is controlled by the sound
driver, and is computed by the following equation:
(bpm ∗ 50)/125 calls per second, which means every 125000/(bpm ∗ 50)
milliseconds. The bpm value is the tempo of the module and can change from
its initial value when requested by the module.
When changing the playback function, you should make sure that you chain to
the default MikMod playback function, otherwise you won’t get module sound
anymore. . .

Example
MikMod_player_t oldroutine;

void MyPlayer(void)

{

Chapter 4: Library Reference 31

oldroutine();

/* your stuff here */

...

}

main()

{

...

/* Register our player */

oldroutine = MikMod_RegisterPlayer(MyPlayer);

...

}

int MikMod_Reset(CHAR *parameters)

Description
This function resets MikMod and reinitialize the sound hardware.

Parameters
parameters

Optional parameters given to the sound driver. If you set the value of md_
device to zero (autodetect), these parameters are ignored.

Result
0 Reinitialization was successful.

nonzero An error occurred during reinitialization.

Notes Use this function when you have changed the global configuration variables:
md_device and md_mixfreq, or one of the md_mode flags which require sound
reinitialization. Sound playback will continue as soon as the driver is ready.

See also MikMod_Exit, MikMod_Init.

int MikMod_SetNumVoices(int musicvoices, int samplevoices)

Description
This function sets the number of mixed voices which can be used for music and
sound effects playback.

Parameters
musicvoices

The number of voices to reserve for music playback.

samplevoices
The number of voices to reserve for sound effects.

Result
0 Initialization was successful.

nonzero An error occurred during initialization.

Notes A value of -1 for any of the parameters will retain the current number of
reserved voices.
The maximum number of voices vary from driver to driver (hardware drivers
often have a limit of 32 to 64 voices, whereas the software drivers handle 255
voices). If your settings exceed the driver’s limit, they will be truncated.

Chapter 4: Library Reference 32

See also MikMod_Init, MikMod_Reset.

void MikMod_Unlock(void)

Description
This function relinquishes exclusive access to libmikmod’s variables.

Notes This function unlocks an internal mutex, so that other threads waiting for the
lock can be resumed.
Every MikMod_Unlock call should be associated to a MikMod_Lock call. To be
sure this is the case, we advise you to define and use the following macros:
#define MIKMOD_LOCK MikMod_Lock();{
#define MIKMOD_UNLOCK }MikMod_Unlock();
The function MikMod_InitThreads must have been invoked before any call to
MikMod_Unlock in made.

See also MikMod_InitThreads, MikMod_Lock.

void MikMod_Update(void)

Description
This routine should be called on a regular basis to update the sound.

Notes The sound output buffer is filled each time this function is called; if you use a
large buffer, you don’t need to call this routine as frequently as with a smaller
buffer, but you get a bigger shift between the sound being played and the
reported state of the player, since the player is always a buffer ahead of the
playback.
If you play low quality sound (for example, mono 8 bit 11 kHz sound), you only
need to call this routine a few times per second. However, for high quality
sound (stereo 16 bit 44 kHz), this rate increases to a few hundred times per
second, but never more, due to the minimal buffer size constraint imposed to
the sound drivers.
If you plan on modifying voice information with the Voice_xx functions, you
should do this before calling MikMod_Update.

char* MikMod_strerror(int errnum)

Description
This function associates a descriptive message to an error code.

Parameters
errnum The MikMod error code.

Result A pointer to a string describing the error.

4.4.2 Module Player Functions

BOOL Player_Active(void)

Description
This function returns whether the module player is active or not.

Result
0 No module is playing.

Chapter 4: Library Reference 33

nonzero A module is currently playing.

Notes This function will still report that the player is active if the playing module is
paused.

See also Player_Paused, Player_TogglePause, Player_Start, Player_Stop

void Player_Free(MODULE* module)

Description
This function stops the module if it is playing and unloads it from memory.

Parameters
module The module to free.

See also Player_Load, Player_LoadFP.

int Player_GetChannelVoice(UBYTE channel)

Description
This function determines the voice corresponding to the specified module chan-
nel.

Parameters
channel The module channel to use.

Result The number of the voice corresponding to the module channel.

Notes If the module channel has NNAs, the number will correspond to the main
channel voice.

See also Voice_SetPanning, Voice_SetVolume, Player_Mute, Player_ToggleMute,
Player_Unmute.

MODULE* Player_GetModule(void)

Description
This function returns the module currently being played.

Result A pointer to the MODULE being played, or NULL if no module is playing.

See also Player_Stop, Player_Start.

MODULE* Player_Load(CHAR* filename, int maxchan, BOOL curious)

Description
This function loads a music module.

Parameters
filename The name of the module file.

maxchan The maximum number of channels the song is allowed to request from the
mixer.

curious The curiosity level to use.

Result A pointer to a MODULE structure, or NULL if an error occurs.

Notes If the curiosity level is set to zero, the module will be loaded normally. However,
if it is nonzero, the following things occur:

Chapter 4: Library Reference 34

• pattern positions occurring after the “end of song” marker in S3M and IT
modules are loaded, and the end of song is set to the last position.

• hidden extra patterns are searched in MOD modules, and if found, played
after the last “official” pattern.

• MED modules with synthsounds are loaded without causing the MMERR_
MED_SYNTHSAMPLES, and synthsounds are mapped to an empty sample.

See also Player_Free, Player_LoadFP, Player_LoadTitle, Player_LoadTitleFP,
Player_Start.

MODULE* Player_LoadFP(FILE* file, int maxchan, BOOL curious)

Description
This function loads a music module.

Parameters
file An open file, at the position where the module starts.

maxchan The maximum number of channels the song is allowed to request from the
mixer.

curious The curiosity level to use.

Result A pointer to a MODULE structure, or NULL if an error occurs.

Notes The file is left open, at the same position as before the function call.
If the curiosity level is set to zero, the module will be loaded normally. However,
if it is nonzero, the following things occur:
• pattern positions occurring after the “end of song” marker in S3M and IT

modules are loaded, and the end of song is set to the last position.
• hidden extra patterns are searched in MOD modules, and if found, played

after the last “official” pattern.
• MED modules with synthsounds are loaded without causing the MMERR_

MED_SYNTHSAMPLES, and synthsounds are mapped to an empty sample.

See also Player_Free, Player_Load, Player_LoadTitle, Player_LoadTitleFP,
Player_Start.

MODULE* Player_LoadTitle(CHAR* filename)

Description
This function retrieves the title of a module file.

Parameters
filename The name of the module file.

Result A pointer to the song title, or NULL if either the module has no title or an error
has occurred.

Notes The title buffer is created with malloc; the caller must free it when it is no
longer necessary.

See also Player_Load, Player_LoadFP, Player_LoadTitleFP.

MODULE* Player_LoadTitleFP(FILE* file)

Chapter 4: Library Reference 35

Description
This function retrieves the title of a module file.

Parameters
file An open file, at the position where the module starts.

Result A pointer to the song title, or NULL if either the module has no title or an error
has occurred.

Notes The title buffer is created with malloc; the caller must free it when it is no
longer necessary.

See also Player_Load, Player_LoadFP, Player_LoadTitle.

void Player_Mute(SLONG operation, ...)

Description
This function mutes a single module channel, or a range of module channels.

Parameters
operation Either the number of a module channel to mute (starting from zero), or an

operation code. In the latter case, two extra parameters are needed to determine
the range of channels.

Notes If the operation is MUTE_INCLUSIVE, the two channel numbers delimit the range
and are part of the range ; otherwise, if the operation is MUTE_EXCLUSIVE, they
are outside of the range.

Example
/* mute channel 10 */

Player_Mute(10);

/* mute channels 2 to 5 */

Player_Mute(MUTE_INCLUSIVE, 2, 5);

/* mute channels 7 to 9 */

Player_Mute(MUTE_EXCLUSIVE, 6, 10);

See also Player_Muted, Player_ToggleMute, Player_Unmute.

BOOL Player_Muted(UBYTE channel)

Description
This function determines whether a module channel is muted or not.

Parameters
channel The module channel to test (starting from zero).

Result
0 The channel is not muted.

1 The channel is muted.

See also Player_Mute, Player_ToggleMute, Player_Unmute.

void Player_NextPosition(void)

Description
This function jumps to the next position in the module.

Notes All playing samples and active song voices are cut to avoid hanging notes.

Chapter 4: Library Reference 36

See also Player_PrevPosition, Player_SetPosition.

BOOL Player_Paused(void)

Description
This function determines whether the module is paused or not.

Result
0 The module is not paused.

1 The module is paused.

See also Player_TogglePause.

void Player_PrevPosition(void)

Description
This function jumps to the previous position in the module.

Notes All playing samples and active song voices are cut to avoid hanging notes.

See also Player_NextPosition, Player_SetPosition.

void Player_SetPosition(UWORD position)

Description
This function jumps to the specified position in the module.

Parameters
position The pattern position to jump to.

Notes All playing samples and active song voices are cut to avoid hanging notes.

See also Player_NextPosition, Player_PrevPosition.

void Player_SetSpeed(UWORD speed)

Description
This function sets the module speed.

Parameters
speed The new module speed, in the range 1-32.

See also Player_SetTempo.

void Player_SetTempo(UWORD tempo)

Description
This function sets the module tempo.

Parameters
tempo The new module tempo, in the range 32-255.

See also Player_SetSpeed.

void Player_SetVolume(SWORD volume)

Description
This function sets the module volume.

Chapter 4: Library Reference 37

Parameters
volume The new overall module playback volume, in the range 0-128.

void Player_Start(MODULE* module)

Description
This function starts the specified module playback.

Parameters
module The module to play.

Notes If another module is playing, it will be stopped and the new module will play.

See also Player_Stop.

void Player_Stop(void)

Description
This function stops the currently playing module.

See also Player_Start.

void Player_ToggleMute(SLONG operation, ...)

Description
This function changes the muted status of a single module channel, or a range
of module channels.

Parameters
operation Either the number of a module channel to work on (starting from zero), or an

operation code. In the latter case, two extra parameters are needed to determine
the range of channels.

Notes If the operation is MUTE_INCLUSIVE, the two channel numbers delimit the range
and are part of the range ; otherwise, if the operation is MUTE_EXCLUSIVE, they
are outside of the range.

Example
/* toggle mute on channel 10 */

Player_ToggleMute(10);

/* toggle mute on channels 2 to 5 */

Player_ToggleMute(MUTE_INCLUSIVE, 2, 5);

/* toggle mute on channels 7 to 9 */

Player_ToggleMute(MUTE_EXCLUSIVE, 6, 10);

See also Player_Mute, Player_Muted, Player_Unmute.

void Player_TogglePause(void)

Description
This function toggles the playing/paused status of the module.

Notes Calls to Player_xx functions still have effect when the module is paused.

See also Player_Paused, Player_Start, Player_Stop.

void Player_Unmute(SLONG operation, ...)

Description
This function unmutes a single module channel, or a range of module channels.

Chapter 4: Library Reference 38

Parameters
operation Either the number of a module channel to unmute (starting from zero), or an

operation code. In the latter case, two extra parameters are needed to determine
the range of channels.

Notes If the operation is MUTE_INCLUSIVE, the two channel numbers delimit the range
and are part of the range ; otherwise, if the operation is MUTE_EXCLUSIVE, they
are outside of the range.

Example
/* unmute channel 10 */

Player_Unmute(10);

/* unmute channels 2 to 5 */

Player_Unmute(MUTE_INCLUSIVE, 2, 5);

/* unmute channels 7 to 9 */

Player_Unmute(MUTE_EXCLUSIVE, 6, 10);

See also Player_Mute, Player_Muted, Player_ToggleMute.

4.4.3 Sample Functions

void Sample_Free(SAMPLE* sample)

Description
This function unloads a sample from memory.

Parameters
sample The sample to free.

See also Sample_Load, Sample_LoadFP.

SAMPLE* Sample_Load(CHAR* filename)

Description
This function loads a sample.

Parameters
filename The sample filename.

Result A pointer to a SAMPLE structure, or NULL if an error has occurred.

See also Sample_Free, Sample_LoadFP.

SAMPLE* Sample_LoadFP(FILE* file)

Description
This function loads a sample.

Parameters
file An open file, at the position where the sample starts.

Result A pointer to a SAMPLE structure, or NULL if an error has occurred.

Notes The file is left open, at the same position as before the function call.

See also Sample_Free, Sample_Load.

SBYTE Sample_Play(SAMPLE* sample, ULONG start, UBYTE flags)

Chapter 4: Library Reference 39

Description
This function plays a sample as a sound effect.

Parameters
sample The sample to play.

start The starting position (in samples).

flags Either zero, for normal sound effects, or SFX_CRITICAL, for critical sound effects
which must not be interrupted.

Result The voice number corresponding to the voice which will play the sample.

Notes Each new sound effect is played on a new voice. When all voices are taken, the
oldest sample which was not marked as critical is cut and its voice is used for
the new sample. Critical samples are not cut unless all the voices are taken
with critical samples and you attempt to play yet another critical sample. Use
Voice_Stop to force the end of a critical sample.

See also MikMod_SetNumVoices, Voice_Play, Voice_SetFrequency, Voice_
SetPanning, Voice_SetVolume, Voice_Stop.

4.4.4 Voice Functions

ULONG Voice_GetFrequency(SBYTE voice)

Description
This function returns the frequency of the sample currently playing on the
specified voice.

Parameters
voice The number of the voice to get frequency.

Result The current frequency of the sample playing on the specified voice, or zero if
no sample is currently playing on the voice.

See also Voice_SetFrequency.

ULONG Voice_GetPanning(SBYTE voice)

Description
This function returns the panning position of the sample currently playing on
the specified voice.

Parameters
voice The number of the voice to get panning position.

Result The current panning position of the sample playing on the specified voice, or
PAN_CENTER if no sample is currently playing on the voice.

See also Voice_SetPanning.

SLONG Voice_GetPosition(SBYTE voice)

Description
This function returns the sample position (in samples) of the sample currently
playing on the specified voice.

Chapter 4: Library Reference 40

Parameters
voice The number of the voice to get sample position (starting from zero).

Result The current play location of the sample playing on the specified voice, or zero
if the position can not be determined or if no sample is currently playing on
the voice.

Notes This function may not work with some drivers (especially for hardware mixed
voices). In this case, it returns always -1.

See also Sample_Play, Voice_Play.

UWORD Voice_GetVolume(SBYTE voice)

Description
This function returns the volume of the sample currently playing on the specified
voice.

Parameters
voice The number of the voice to get volume.

Result The current volume of the sample playing on the specified voice, or zero if no
sample is currently playing on the voice.

See also Voice_RealVolume, Voice_SetVolume.

void Voice_Play(SBYTE voice, SAMPLE* sample, ULONG start)

Description
Start a new sample in the specified voice.

Parameters
voice The number of the voice to be processed (starting from zero).

sample The sample to play.

start The starting position (in samples).

Notes The sample will be played at the volume, panning and frequency settings of the
voice, regardless or the sample characteristics.
The sample played this way gets the same “critical” status as the sample which
was previously played on this voice.

See also Sample_Play, Voice_SetFrequency, Voice_SetPanning, Voice_SetVolume.

ULONG Voice_RealVolume(SBYTE voice)

Description
This function returns the actual playing volume of the specified voice.

Parameters
voice The number of the voice to analyze (starting from zero).

Result The real volume of the voice when the function was called, in the range 0-65535,
not related to the volume constraint specified with Voice_SetVolume.

Notes This function may not work with some drivers (especially for hardware mixed
voices). In this case, it always returns zero.
Also note that the real volume computation is not a trivial process and takes
some CPU time.

Chapter 4: Library Reference 41

See also Sample_Play, Voice_GetVolume, Voice_Play, Voice_SetVolume.

void Voice_SetFrequency(SBYTE voice, ULONG frequency)

Description
This function sets the frequency (pitch) of the specified voice.

Parameters
voice The number of the voice to be processed (starting from zero).

frequency The new frequency of the voice, in hertz.

See also Sample_Play, Voice_GetFrequency, Voice_Play, Voice_SetPanning, Voice_
SetVolume, Voice_Stop.

void Voice_SetPanning(SBYTE voice, ULONG panning)

Description
This function sets the panning position of the specified voice.

Parameters
voice The number of the voice to be processed (starting from zero).

panning The new panning position of the voice.

Notes Panning can vary between 0 (PAN_LEFT) and 255 (PAN_RIGHT). Center is 127
(PAN_CENTER. Surround sound can be enabled by specifying the special value
PAN_SURROUND.

See also Sample_Play, Voice_GetPanning, Voice_Play, Voice_SetFrequency, Voice_
SetVolume, Voice_Stop.

void Voice_SetVolume(SBYTE voice, UWORD volume)

Description
This function sets the volume of the specified voice.

Parameters
voice The number of the voice to be processed (starting from zero).

volume The new volume of the voice, in the range 0-256.

See also Sample_Play, Voice_GetVolume, Voice_Play, Voice_SetFrequency, Voice_
SetPanning, Voice_Stop.

void Voice_Stop(SBYTE voice)

Description
This function stops the playing sample of the specified voice.

Parameters
voice The number of the voice to be processed (starting from zero).

Notes After the call to Voice_Stop, the function Voice_Stopped will return nonzero
(true) for the voice. If you want to silence the voice without stopping the
playback, use Voice_SetVolume(voice, 0) instead.

See also Sample_Play, Voice_Play, Voice_SetFrequency, Voice_SetPanning, Voice_
SetVolume.

Chapter 4: Library Reference 42

BOOL Voice_Stopped(SBYTE voice)

Description
This function returns whether the voice is active or not.

Parameters
voice The number of the voice to be checked (starting from zero).

Result
0 The voice is stopped or has no sample assigned.

nonzero The voice is playing a sample.

Notes This function may not work with some drivers (especially for hardware mixed
voices). In this case, its return value is undefined.

See also Voice_Stop.

4.5 Loader Reference

4.5.1 Module Loaders

MikMod presents a large choice of module loaders, for the most common formats as well as
for some less-known exotic formats.

load_669 This loader recognizes “Composer 669” and “Unis 669” modules. The 669 and
“Extended 669” formats were among the first PC module formats. They do
not have a wide range of effects, but support up to 32 channels.
“Composer 669” was written by Tran of Renaissance, a.k.a. Tomasz Pytel and
released in 1992. “Unis 669 Composer” was written by Jason Nunn and released
in 1994.

load_amf This loader recognizes the “Advanced Module Format”, which is the internal
module format of the “DOS Sound and Music Interface” (DSMI) library. This
format has the same limitations as the S3M format. The most famous DSMI
application was DMP, the Dual Module Player.
DMP and the DSMI library were written by Otto Chrons. DSMI was first
released in 1993.

load_dsm This loader recognizes the internal DSIK format, which is the internal module
format of the “Digital Sound Interface Kit” (DSIK) library, the ancester of the
SEAL library. This format has the same limitations as the S3M format.
The DSIK library was written by Carlos Hasan and released in 1994.

load_far This loader recognizes “Farandole” modules. These modules can be up to 16
channels and have Protracker comparable effects.
The Farandole composer was written by Daniel Potter and released in 1994.

load_gdm This loader recognizes the “General DigiMusic” format, which is the internal
format of the “Bells, Whistles and Sound Boards” library. This format has the
same limitations as the S3M format.
The BWSB library was written by Edward Schlunder and first released in 1993.

Chapter 4: Library Reference 43

load_imf This loader recognizes “Imago Orpheus” modules. This format is roughly equiv-
alent to the XM format, but with two effects columns instead of a volume col-
umn and an effect column.
Imago Orpheus was written by Lutz Roeder and released in 1994.

load_it This loader recognizes “Impulse Tracker” modules, currently the most powerful
format. These modules support up to 64 real channels, and up to 256 virtual
channels with the “New Note Action” feature. Besides, it has the widest range
of effects, and supports 16 bit samples as well as surround sound.
“Impulse Tracker” was written by Jeffrey Lim and released in 1996.

load_med This loader recognizes “OctaMED” modules. These modules are comparable
to Protracker modules, but can embed “synthsounds”, which are midi-like in-
struments.
“MED” and later “OctaMED” were written by Teijo Kinnunen. “MED” was
released in 1989, and “OctaMED” was released in 1992.

load_m15 This loader recognizes the old 15 instrument modules, created by “Ultimate
Soundtracker”, “Soundtracker” and the first versions of “Protracker”.
Since this format was one of the first module formats, developed in 1987, it does
not have any signature field, which makes it hard to detect reliably, because of
its similarities with later module formats.

load_mod This loader recognizes the standard 31 instrument modules, created by “Pro-
tracker” or Protracker-compatible programs. The original Protracker format
was limited to 4 channels, but other trackers like “TakeTracker”, “StarTracker”
or “Oktalyzer” afforded more channels.
Although it is now technically obsolete, this format is still widely used, due to
its playback simplicity (on the adequate hardware, the Amiga).

load_mtm This loader recognizes the “MultiTracker Module Editor” modules. The MTM
format has up to 32 channels, and protracker comparable effects. It was in-
tended to replace “Composer 669”. The “MultiTracker Module Editor” was
written by Starscream of Renaissance, a.k.a. Daniel Goldstein and released in
late 1993.

load_okt This loader recognizes the “Amiga Oktalyzer” modules. The OKT format has
up to 8 channels, and a few protracker compatible effects, as well as other
OKT-specific effects, of which only a few are currently supported by libmikmod.
“Oktalyzer” was written by Armin Sander and released in 1990.

load_stm This loader recognizes “ScreamTracker” modules. “ScreamTracker” was the
first PC tracker, as well as the first PC module format. Loosely inspired by
the “SoundTracker” format, it does not have as many effects as Protracker,
although it supports 31 instruments and 4 channels.
“ScreamTracker” was written by PSI of Future Crew, a.k.a. Sami Tammilehto.

load_stx This loader recognizes “STMIK 0.2” modules. “STMIK” (the Scream Tracker
Music Interface Kit) was a module playing library distributed by Future Crew
to play Scream Tracker module in games and demos. It uses an intermediate
format between STM and S3M and comes with a tool converting STM modules

Chapter 4: Library Reference 44

to STX.
“STMIK” was written by PSI of Future Crew, a.k.a. Sami Tammilehto.

load_s3m This loader recognizes “ScreamTracker 3” modules. This version was a huge
improvement over the original “ScreamTracker”. It supported 32 channels, up
to 99 instruments, and a large choice of effects.
“ScreamTracker 3” was written by PSI of Future Crew, a.k.a. Sami Tammilehto,
and released in 1994.

load_ult This loader recognizes “UltraTracker” modules. They are mostly similar to
Protracker modules, but support two effects per channel.
“UltraTracker” was written by MAS of Prophecy, a.k.a. Marc Andre Schallehn,
and released in 1993.

load_uni This loader recognizes “UNIMOD” modules. This is the internal format used
by MikMod and APlayer. Use of this format is discouraged, this loader being
provided for completeness.

load_xm This loader recognizes “FastTracker 2” modules. This format was designed from
scratch, instead of creating yet another Protracker variation. It was the first
format using instruments as well as samples, and envelopes for finer effects.
FastTracker 2 was written by Fredrik Huss and Magnus Hogdahl, and released
in 1994.

4.5.2 Sample Loaders

Currently, the only file type than can be loaded as a sample is the RIFF WAVE file. Stereo
or compressed WAVE files are not supported yet.

4.6 Driver Reference

4.6.1 Network Drivers

These drivers send the generated sound over the network to a server program, which sends
the sound to the real sound hardware. The server program can be on the same machine
than your program, but MikMod does not have access to the hardware. Network drivers
only support software mixing.

drv_AF This driver works with the “Digital AudioFile” library.
Start the server on the machine you want, set its hostname in the ‘AUDIOFILE’
environment variable, and MikMod is ready to send it sound.

drv_esd This driver works with the “Enlightened Sound Daemon”.
Start the esd daemon on the machine you want, set its hostname in the
‘ESPEAKER’ environment variable, and MikMod is ready to send it sound.

4.6.2 Hardware Drivers

These drivers access to the sound hardware of the machine they run on. Depending on your
Unix flavor, you’ll end with one or more drivers from this list:

drv_aix This driver is only available under AIX, and access its audio device.
This driver only supports software mixing.

Chapter 4: Library Reference 45

drv_alsa This driver is only available under Linux, and requires the ALSA driver to be
compiled for your current kernel.
This driver only supports software mixing, but a future version of the driver
might be able to use the hardware capabilities of some sound cards.

drv_dart This driver is only available under OS/2 version 3 and higher (Warp), and uses
the “Direct Audio Real-Time” interface.
This driver only supports software mixing.

drv_ds This driver is only available under WIN32, and uses the “DirectSound” api.
This driver only supports software mixing.

drv_hp This driver is only available under HP-UX, and access its audio device.
This driver only supports software mixing.

drv_os2 This driver is only available under OS/2 version 3 and higher (Warp), and OS/2
2.x with MMPM/2.
This driver only supports software mixing.

drv_oss This driver is available under any Unix with the Open Sound System drivers
installed. Linux and FreeBSD also come with the OSS/Lite driver (the non-
commercial version of OSS) and can make use of this driver.
This driver only supports software mixing.

drv_sam9407
This driver is only available under Linux, and requires the Linux sam9407 driver
to be compiled for your current kernel.
This driver only supports hardware mixing.

drv_sgi This driver is only available under IRIX, and uses the SGI audio library.
This driver only supports software mixing.

drv_sndio
This driver is only available under OpenBSD and uses the “sndio” interface.
This driver only supports software mixing.

drv_sun This driver is only available under Unices which implement SunOS-like audio
device interfaces, that is, SunOS, Solaris, NetBSD and OpenBSD.
This driver only supports software mixing.

drv_ultra
This driver is only available under Linux, and requires the Linux Ultrasound
driver (the ancestor of ALSA) to be compiled for your current kernel.
This driver only supports hardware mixing.

drv_win This driver is only available under WIN32, and uses the “multimedia API”.
This driver only supports software mixing.

4.6.3 Disk Writer Drivers

These drivers work on any machine, since the generated sound is not sent to hardware, but
written in a file. Disk writer drivers only support software mixing.

drv_raw This driver outputs the sound data in a file by default named ‘music.raw’ in the
current directory. The file has no header and only contains the sound output.

Chapter 4: Library Reference 46

drv_wav This driver outputs the sound data in a RIFF WAVE file by default named
‘music.wav’ in the current directory.

4.6.4 Other Drivers

These drivers are of little interest, but are handy sometimes.

drv_stdout
This driver outputs the sound data to the program’s standard output. To avoid
inconvenience, the data will not be output if the standard output is a terminal,
thus you have to pipe it through another command or to redirect it to a file.
Using this driver and redirecting to a file is equivalent to using the drv_raw
disk writer.
This driver only supports software mixing.

drv_pipe This driver pipes the sound data to a command (which must be given in the
driver commandline, via MikMod_Init).
This driver only supports software mixing.

drv_nos This driver doesn’t produce sound at all, and will work on any machine.
Since it does not have to produce sound, it supports both hardware and software
mixing, with as many hardware voices as you like.

Function Index 47

Function Index

M
MikMod_Active . 9, 27
MikMod_DisableOutput 4, 9, 27
MikMod_EnableOutput . 4, 9, 27
MikMod_Exit . 2, 3, 4, 9, 27
MikMod_GetVersion . 8, 27
MikMod_InfoDriver . 9, 28
MikMod_InfoLoader . 11, 28
MikMod_Init . 2, 3, 4, 9, 28
MikMod_InitThreads . 9, 28
MikMod_Lock . 9, 29
MikMod_RegisterAllDrivers 2, 3, 4, 9, 29
MikMod_RegisterAllLoaders 3, 11, 29
MikMod_RegisterDriver . 9, 29
MikMod_RegisterErrorHandler 9, 29
MikMod_RegisterLoader 11, 30
MikMod_RegisterPlayer 11, 30
MikMod_Reset . 9, 31
MikMod_SetNumVoices . 4, 9, 31
MikMod_strerror . 3, 32
MikMod_Unlock . 9, 32
MikMod_Update . 3, 4, 7, 9, 32

P
Player_Active . 3, 11, 32
Player_Free . 3, 11, 33
Player_GetChannelVoice 11, 33
Player_GetModule . 11, 33
Player_Load . 3, 11, 33
Player_LoadFP . 11, 34
Player_LoadGeneric . 13
Player_LoadTitle . 11, 34
Player_LoadTitleFP . 11, 34
Player_Mute . 11, 35

Player_Muted . 11, 35
Player_NextPosition . 11, 35
Player_Paused . 11, 36
Player_PrevPosition . 11, 36
Player_SetPosition . 11, 36
Player_SetSpeed . 11, 36
Player_SetTempo . 11, 36
Player_SetVolume . 11, 36
Player_Start . 3, 11, 37
Player_Stop . 3, 11, 37
Player_ToggleMute . 11, 37
Player_TogglePause . 11, 37
Player_Unmute . 37
Player_UnMute . 11

S
Sample_Free . 4, 10, 38
Sample_Load . 4, 10, 38
Sample_LoadFP . 10, 38
Sample_LoadGeneric . 13
Sample_Play . 4, 7, 10, 38

V
Voice_GetFrequency . 10, 39
Voice_GetPanning . 10, 39
Voice_GetPosition . 10, 39
Voice_GetVolume . 10, 40
Voice_Play . 10, 40
Voice_RealVolume . 40
Voice_SetFrequency . 7, 10, 41
Voice_SetPanning . 7, 10, 41
Voice_SetVolume . 7, 10, 41
Voice_Stop . 7, 10, 41
Voice_Stopped . 4, 7, 10, 42

Type and Variable Index 48

Type and Variable Index

B
BOOL . 9

C
CHAR . 9

I
INSTRUMENT . 19

M
md_device . 9, 15
md_driver . 15
md_mixfreq . 9, 15
md_mode . 9, 15
md_musicvolume . 14
md_pansep . 14
md_reverb . 14
md_sndfxvolume . 14

md_volume . 14
MDRIVER . 16
MikMod_critical . 9, 14
MikMod_errno . 3, 9, 14
MikMod_strerror . 9
MODULE . 16
MREADER . 13, 20
MWRITER . 13, 21

S
SAMPLE . 19
SBYTE . 9
SLONG . 9
SWORD . 9

U
UBYTE . 9
ULONG . 9
UWORD . 9

i

Table of Contents

1 Introduction . 1

2 Tutorial . 2
2.1 MikMod Concepts . 2
2.2 A Skeleton Program . 2
2.3 Playing Modules . 3
2.4 Playing Sound Effects . 4
2.5 More Sound Effects . 7

3 Using the Library . 8
3.1 Library Version . 8
3.2 Type Definitions . 9
3.3 Error Handling . 9
3.4 Library Initialization and Core Functions . 9
3.5 Samples and Voice Control . 10
3.6 Modules and Player Control . 11
3.7 Loading Data from Memory . 13

4 Library Reference . 14
4.1 Variable Reference . 14

4.1.1 Error Variables . 14
4.1.2 Sound Settings . 14
4.1.3 Driver Settings . 14

4.2 Structure Reference . 16
4.2.1 Drivers . 16
4.2.2 Modules . 16

4.2.2.1 General Module Information . 16
4.2.2.2 Playback Settings . 18

4.2.3 Module Instruments . 19
4.2.4 Samples . 19
4.2.5 MREADER . 20
4.2.6 MWRITER . 21

4.3 Error Reference . 21
4.3.1 General Errors . 21
4.3.2 Sample Errors . 22
4.3.3 Module Errors . 22
4.3.4 Driver Errors . 23

4.4 Function Reference . 27
4.4.1 Library Core Functions . 27
4.4.2 Module Player Functions . 32
4.4.3 Sample Functions . 38
4.4.4 Voice Functions . 39

ii

4.5 Loader Reference . 42
4.5.1 Module Loaders . 42
4.5.2 Sample Loaders . 44

4.6 Driver Reference . 44
4.6.1 Network Drivers . 44
4.6.2 Hardware Drivers . 44
4.6.3 Disk Writer Drivers . 45
4.6.4 Other Drivers . 46

Function Index . 47

Type and Variable Index . 48

	Introduction
	Tutorial
	MikMod Concepts
	A Skeleton Program
	Playing Modules
	Playing Sound Effects
	More Sound Effects

	Using the Library
	Library Version
	Type Definitions
	Error Handling
	Library Initialization and Core Functions
	Samples and Voice Control
	Modules and Player Control
	Loading Data from Memory

	Library Reference
	Variable Reference
	Error Variables
	Sound Settings
	Driver Settings

	Structure Reference
	Drivers
	Modules
	General Module Information
	Playback Settings

	Module Instruments
	Samples
	MREADER
	MWRITER

	Error Reference
	General Errors
	Sample Errors
	Module Errors
	Driver Errors

	Function Reference
	Library Core Functions
	Module Player Functions
	Sample Functions
	Voice Functions

	Loader Reference
	Module Loaders
	Sample Loaders

	Driver Reference
	Network Drivers
	Hardware Drivers
	Disk Writer Drivers
	Other Drivers

	Function Index
	Type and Variable Index

